Abstract

Testosterone is essential for spermatogenesis and the development of male sexual characteristics. However, steroidogenesis produces a significant amount of reactive oxygen species (ROS), which can disrupt testosterone production. The myocyte enhancer factor 2 (MEF2) is an important regulator of organogenesis and cell differentiation in various tissues. In the testis, MEF2 is present in Sertoli and Leydig cells throughout fetal and adult life. MEF2-deficient MA-10 Leydig cells exhibit a significant decrease in steroidogenesis concomitant with a reduction in glutathione S-transferase (GST) activity and in the expression of the 4 Gsta members (GST) that encode ROS inactivating enzymes. Here, we report a novel role for MEF2 in ROS detoxification by directly regulating Gsta expression in Leydig cells. Endogenous Gsta1-4 mRNA levels were decreased in MEF2-deficient MA-10 Leydig cells. Conversely, overexpression of MEF2 increased endogenous Gsta1 levels. MEF2 recruitment to the proximal Gsta1 promoter and direct binding on the -506-bp MEF2 element were confirmed by chromatin immunoprecipitation and DNA precipitation assays. In MA-10 Leydig cells, MEF2 activates the Gsta1 promoter and cooperates with Ca(2+)/calmodulin-dependent kinases I to further enhance Gsta1 promoter activity. These effects were lost when the -506-bp MEF2 element was mutated or when a MEF2-Engrailed dominant negative protein was used. Similar results were obtained on the Gsta2, Gsta3, and Gsta4 promoters, suggesting a global role for MEF2 factors in the regulation of all 4 Gsta genes. Altogether, our results identify a novel role for MEF2 in the expression of genes involved in ROS detoxification, a process essential for adequate testosterone production in Leydig cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call