Abstract
cMaf is a leucine-zipper transcription factor that is involved in cell differentiation, oncogenic transformation, and human diseases; however, the functions of cMaf in inflammatory responses in macrophages are still not fully understood. Western blot analysis showed that cMaf expression was induced by lipopolysaccharide (LPS) stimulation in mouse macrophages. An enzyme-linked immunosorbent assay was performed to detect the level of expression of inflammatory cytokines after knockdown of cMaf expression in macrophages using a small interfering RNA (siRNA). Signaling pathway inhibitor analyses indicated that extracellular signal-related kinase and phosphoinositide 3-kinase contribute to mammalian target of rapamycin phosphorylation(mTOR), which controls cMaf expression at the translational level by regulating the expression of eIF4E-binding protein1 and S6 ribosomal kinase1 in response to Toll-like receptor4 signaling. Histopathological findings of the lung and a survival analysis showed that mice transplanted with cMaf-knockdown macrophages were more susceptible to LPS challenge. Taken together, our study revealed that the control of cMaf expression at the translational level by mTOR regulated the expression of inflammatory genes in response to LPS challenge. Moreover, cMaf protected mice from septic shock indicating that cMaf may improve host fitness, thereby enabling the survival of certain infectious diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.