Abstract

The equilibrium trajectory of the axis of a rod subject to an externally imposed curved potential energy trough tends to conform to the shape of the curved trough, but also tends to be straight because of elastic resistance to bending. The actual path of the axis is a balance between the two extremes. We consider a potential energy trough centered along a circular arc of radius R. For a rod of small length compared to R, we show that the axis at equilibrium forms an arc of a circle of radius greater than R. The value of the radius of the axial path depends on the relative values of the Hooke's Law bending constant for the rod and the depth and width of the trough. Motivation for the calculation is provided by nucleosomal DNA, which conforms to the surface of a roughly cylindrical histone core at physiological ionic strength, but is observed to unwind into a partially extended conformation at very low ionic strength. We suggest that the rigidity to bending of short DNA segments becomes sufficiently great at low ionic strength to overcome attractive interactions with the histone surface. Alternately, of course, if during the cell cycle mutually attractive forces between DNA and histone core are weakened at constant ionic strength, the same type of unfolding would be expected to occur as the strength of the DNA-histone contacts drops below the level required to overcome elastic resistance to bending of the DNA rod.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.