Abstract
We discuss the generalisation of the so-called traditional approximation, well known in geophysics, to general relativity. We show that the approximation is applicable for rotating relativistic stars provided that one focuses on relatively thin radial shells. This means that the framework can be used to study waves in neutron star oceans. We demonstrate that, once the effects of the relativistic frame-dragging are accounted for, the angular problem reduces to Laplace's tidal equation. We derive the dispersion relation for various classes of waves in a neutron star ocean and show that the combined effects of the frame-dragging and the gravitational redshift typically lower the frequency of a mode by about 20%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.