Abstract

The main topic addressed in this paper is trace-optimization of polynomials in noncommuting (nc) variables: given an nc polynomial f, what is the smallest trace \({f(\underline {A})}\) can attain for a tuple of matrices \({\underline {A}}\)? A relaxation using semidefinite programming (SDP) based on sums of hermitian squares and commutators is proposed. While this relaxation is not always exact, it gives effectively computable bounds on the optima. To test for exactness, the solution of the dual SDP is investigated. If it satisfies a certain condition called flatness, then the relaxation is exact. In this case it is shown how to extract global trace-optimizers with a procedure based on two ingredients. The first is the solution to the truncated tracial moment problem, and the other crucial component is the numerical implementation of the Artin-Wedderburn theorem for matrix *-algebras due to Murota, Kanno, Kojima, Kojima, and Maehara. Trace-optimization of nc polynomials is a nontrivial extension of polynomial optimization in commuting variables on one side and eigenvalue optimization of nc polynomials on the other side—two topics with many applications, the most prominent being to linear systems engineering and quantum physics. The optimization problems discussed here facilitate new possibilities for applications, e.g. in operator algebras and statistical physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.