Abstract

The hermaphrodite-specific neurons (HSNs) of the nematode Caenorhabditis elegans are generated embryonically in both hermaphrodites and males but undergo programmed cell death in males. The gene egl-1 encodes a BH3-containing cell death activator that is required for programmed cell death in C. elegans. Gain-of-function (gf) mutations in egl-1 cause the inappropriate programmed cell death of the HSNs in hermaphrodites. These mutations lie 5.6 kb downstream of the egl-1 transcription unit and disrupt the binding of the TRA-1A zinc finger protein, the terminal global regulator of somatic sexual fate. This disruption results in the activation of the egl-1 gene in the HSNs not only in males but also in hermaphrodites. Our findings suggest that in hermaphrodites TRA-1A represses egl-1 transcription in the HSNs to prevent these neurons from undergoing programmed cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.