Abstract

Iron-sulfur (Fe-S) clusters are inorganic cofactors of proteins that play key roles in numerous essential biological processes, for example, respiration and DNA replication. Cells possess dedicated biosynthetic pathways to assemble Fe-S clusters, including a pathway in the mitochondrion and cytosol. A single transporter, called ABCB7, connects these two pathways, allowing an essential intermediate generated by the mitochondrial pathway to be used in the cytosolic pathway. Cytosolic and nuclear Fe-S proteins are dependent on the mitochondrial pathway, mediated by ABCB7, in numerous organisms studied to date. Here, we study the role of a homolog of ABCB7, which we name ABCB7-like (ABCB7L), in the ubiquitous unicellular apicomplexan parasite Toxoplasma gondii. We generated a depletion mutant of Toxoplasma ABCB7L and showed its importance for parasite fitness. Using comparative quantitative proteomic analysis and experimental validation of the mutants, we show that ABCB7L is required for cytosolic and nuclear, but not mitochondrial, Fe-S protein biogenesis. Our study supports the conservation of a protein homologous to ABCB7 and which has a similar function in apicomplexan parasites and provides insight into an understudied aspect of parasite metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.