Abstract

Microplastic pollution has been widely detected across the global ocean, posing a major threat to a wide variety of marine biota. To date, the deleterious impacts of microplastics have predominantly been linked to their direct exposure, while the potential risks posed by the leachates emanating from microplastics have received comparatively less attention. Here, the toxicity of virgin plasticized polyvinyl chloride (PVC) microspheres and their leachates were evaluated on the embryo-larval development of sea cucumber Apostichopus japonicus using an in-vitro assay. Results showed that a significant toxic effect of both PVC microspheres and their leachates on the embryo development and larval growth of sea cucumbers follows a dose-dependent and time-dependent pattern. Nonetheless, the toxicity of PVC leachates surpasses that of the microspheres themselves. Abnormal developmental phenotypes, such as aberrant gastrulation, misaligned mesenchymal cells, and delayed arm development, were also observed in embryos and larvae treated with PVC. Further chemical analyses of PVC microspheres and leachates revealed the existence of five distinct phthalate esters (PAEs), with DIBP (diisobutyl phthalate) and DBP (dibutyl phthalate) exhibiting higher concentrations in the PVC leachates. This finding suggests that the elevated toxicity of plastic leachate may be attributed to the leaching of phthalate additives from the plastic particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call