Abstract

Antibiotic residues, such as tetracycline (TET), in aquatic environments have become a global concern. The liver and gut are important for immunity and metabolism in aquatic organisms. In this study, juvenile groupers were subjected to 1 and 100 μg/L TET for 14 days, and the physiological changes of these fish were evaluated from the perspective of gut-liver axis. After TET exposure, the liver showed histopathology, lipid accumulation, and the elevated ALT activity. An oxidative stress response was induced in the liver and the metabolic pattern was disturbed, especially pyrimidine metabolism. Further, intestinal health was also affected, including the damaged intestinal mucosa, the decreased mRNA expression levels of tight junction proteins (ZO-1, Occludin, and Claudin-3), along with the increased gene expression levels of inflammation (IL-1β, IL-8, TNF-α) and apoptosis (Casp-3 and p53). The diversity of intestinal microbes increased and the community composition was altered, and several beneficial bacteria (Lactobacillus, Bacteroidales S24-7 group, and Romboutsia) and harmful (Aeromonas, Flavobacterium, and Nautella) exhibited notable correlations with hepatic physiological indicators and metabolites. These results suggested that TET exposure can adversely affect the physiological homeostasis of groupers through the gut-liver axis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.