Abstract

Food chemical and microbiological contamination are major global food safety issues. This study investigated the combined effects of the food-borne pathogen Helicobacter pylori (H. pylori) and the pollutant benzo(a)pyrene (Bap) on atrophic gastritis and gut microbiota in Mongolian gerbils. The results demonstrated that simultaneous administration of H. pylori and Bap caused more severe weight loss, DNA damage, and gastritis in Mongolian gerbils compared with those exposed to H. pylori or Bap alone. The combination also significantly increased the serum level of proinflammatory cytokines, including IL-1β (p < .05), IL-6 (p < .0001), and TNF-α (p < .05). Additionally, the H. pylori and Bap combination altered the composition of gut microbiota in Mongolian gerbils: the relative abundance of Lactobacillus and Ligilactobacillus at the genus level (p < .05) was significantly reduced while the relative abundance of Allobaculum and Erysipelotrichaceae enhanced (p < .0001, p < .05). Our study revealed that the synergy of H. pylori and Bap can boost the development of atrophic gastritis and lead to gut microbiota dysbiosis in Mongolian gerbils, which provides essential implications for preventing contaminated foods to sustain life and promote well-being.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.