Abstract

Using the literature data of the refractive index, the structural unit molar volume of polymers and their dipole moment, as well as the literature data of the polarizability, ionization potential, and dipole moment of many liquids, values of the Φ parameter for paraffin—liquid and polymer—liquid interfaces were calculated. Next, introducing these values of Φ and the earlier measured values of the contact angle for many liquids to the Young equation, values of the surface free energy (γ S) of paraffin, polytetrafluoroethylene (PTFE), polyethylene (PE), polyethylene terephthalate (PET), and polymethacrylate (PMMA), were determined. It was found that the average values of γ S for these solids were in agreement with those calculated on the basis of geometric, harmonic, or harmonic—geometric mean approaches. The values of the surface free energy of paraffin, PTFE, PE, PET, and PMMA were also calculated from the Young equation modified by Neumann et al. and, using the earlier measured values of the contact angle for many liquids, they were compared with the values obtained by other methods. Next, employing the mean value of the surface free energy, values of the contact angles for many liquids were calculated and compared with those measured earlier for the same liquids. It was found that for paraffin, PTFE, and PE there were big differences among the values of their surface free energies calculated from the contact angles for some liquids; however, the average values were in agreement with those obtained by other methods. The average values of the surface free energies of PET and PMMA were also in the range of the results obtained by other authors. It was also found that the average deviations of the contact angles calculated from the Young equation modified by Neumann et al. from the measured ones were slightly larger than those of the contact angles calculated from equations employing the geometric and harmonic means of the surface free energy components; the method of Neumann et al. may also be used to predict the wettability in some systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call