Abstract

A face irregular total k-labeling λ:V∪E→{1,2,…,k} of a 2-connected plane graph G is a labeling of vertices and edges such that their face-weights are pairwise distinct. The weight of a face f under a labeling λ is the sum of the labels of all vertices and edges surrounding f. The minimum value k for which G has a face irregular total k-labeling is called the total face irregularity strength of G, denoted by tfs(G). The lower bound of tfs(G) is provided along with the exact value of two certain plane graphs. Improving the results, this paper deals with the total face irregularity strength of the disjoint union of multiple copies of a plane graph G. We estimate the bounds of tfs(G) and prove that the lower bound is sharp for G isomorphic to a cycle, a book with m polygonal pages, or a wheel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.