Abstract

AbstractAnalyses of FUSE spacecraft spectra have provided measurements of D/H in the gas phase of the interstellar medium for many lines of sight extending to several kpc from the Sun. These measurements, together with the earlier Copernicus, HST, and IMAPS data, show a wide range of D/H values that have challenged both observers and chemical evolution modellers. I believe that the best explanation for the diverse D/H measurements is that deuterium can be sequestered on to carbonaceous grains and PAH molecules and thereby removed from the interstellar gas. Grain destruction can raise the gas phase D/H value to approximately the total D/H value. Supernovae and stellar winds, however, can decrease the total D/H value along lines of sight on time scales less than mixing time scales. I will summarize the theoretical and observational arguments for this model and estimate the most likely range for the total D/H in the local Galactic disk. This range in total D/H presents a constraint on realistic Galactic chemical evolution models or the primordial value of D/H or both.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call