Abstract

Ab initio molecular orbital calculations were carried out for the antiperiplanar (ap), the synclinal (sc), phenyl/phenyl eclipsed (syn barrier), and phenyl/H eclipsed (ap/sc barrier) conformations of 1,2-diphenylethane, and the energy ordering of conformations thus obtained was compared with the torsional energy profile estimated with the MM2 and MM3 molecular mechanics force fields. The basis set effect on the results was studied at the restricted Hartree–Fock (RHF) self-consistent field (SCF) level of theory, and the electron correlation energies were corrected by the second-order (MP2) Møller–Plesset perturbation treatment using the 6-31G * basis set. The performance of a DFT model (Becke-style three-parameter hybrid method using the correlation functional of Lee, Yang and Parr, B3LYP) was also tested to assess relative energies of the conformations using two basis sets, 6-31G * and 6-311G * *. The RHF and B3LYP results are qualitatively the same, while the MP2 calculations produced significant differences in the geometries and reversed the order of preference for the antiperiplanar and the synclinal conformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.