Abstract

The Tor pathway mediates cell growth in response to nutrient availability, in part by inducing ribosomal protein (RP) gene expression via an unknown mechanism. Expression of RP genes coincides with recruitment of the Esa1 histone acetylase to RP gene promoters. We show that inhibition of Tor with rapamycin releases Esa1 from RP gene promoters and leads to histone H4 deacetylation without affecting promoter occupancy by Rap1 and Abf1. Genetic and biochemical evidence identifies Rpd3 as the major histone deacetylase responsible for reversing histone H4 acetylation at RP gene promoters in response to Tor inhibition by rapamycin or nutrient limitation. Our results illustrate that the Tor pathway links nutrient sensing with histone acetylation to control RP gene expression and cell growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.