Abstract
The highly conserved target-of-rapamycin (TOR) protein kinases control cell growth in response to nutrients and growth factors. In mammals, TOR has been shown to interact with raptor to relay nutrient signals to downstream translation machinery. We report that in C. elegans, mutations in the genes encoding CeTOR and raptor result in dauer-like larval arrest, implying that CeTOR regulates dauer diapause. The daf-15 (raptor) and let-363 (CeTOR) mutants shift metabolism to accumulate fat, and raptor mutations extend adult life span. daf-15 transcription is regulated by DAF-16, a FOXO transcription factor that is in turn regulated by daf-2 insulin/IGF signaling. This is a new mechanism that regulates the TOR pathway. Thus, DAF-2 insulin/IGF signaling and nutrient signaling converge on DAF-15 (raptor) to regulate C. elegans larval development, metabolism and life span.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.