Abstract

We construct the universal type structure for conditional probability systems without any topological assumption, namely a type structure that is terminal, belief-complete, and non-redundant. In particular, in order to obtain the belief-completeness in a constructive way, we extend the work of Meier [An Infinitary Probability Logic for Type Spaces. Israel Journal of Mathematics, 192, 1-58] by proving strong soundness and strong completeness of an infinitary conditional probability logic with truthful and non-epistemic conditioning events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.