Abstract

ABSTRACT We report a study of the transitional intervals between pulsar B0943+10’s two primary Q and B emission modes using Arecibo 327-MHz observations. The goal of this study was to detect signs of a ‘transitional’ mode at 327 MHz, discovered recently at lower frequencies. We have found subpulse drift and profile form patterns at 327 MHz similar to those identified at lower frequencies in the Q-to-B mode transition process. Pulse fading during about 15 stellar rotations preceding the appearance of subpulse drift was observed as well. Another part of the work is devoted to a detailed study of the pulse polarization variations in the main modes. A complex behaviour of the linear polarization percentage (LPP) of the dominant first component of the average profile with B-mode age has been found: during the first 4 h, the LPP continuously increases from 5 to 40 per cent, and over the next 1.5 h gradually decreases down to 30 per cent until the subsequent onset of the Q mode. In contrast, the LPP of the second component does not change over the B-mode lifetime, remaining at the level of 22 per cent. A non-instantaneous decrease in the LPP was detected at Q-mode onset. No systematic change of the LPP of the averaged Q-mode pulses over several hours of age was found. The results are discussed within the framework of the core–cone beam model and orthogonal polarization modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call