Abstract

Crystals and other condensed matter systems described by density waves often exhibit dislocations. Here we show, by considering the topology of the ground state manifolds (GSMs) of such systems, that dislocations in the density phase field always split into disclinations, and that the disclinations themselves are constrained to sit at particular phase values in the GSM. This constraint on the location of the disclinations results in an energy barrier to dislocation glide. Consequently, the topology of the GSM alone gives rise to a Peierls–Nabarro barrier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.