Abstract

Many genes, and conceivably most genes, are constitutively expressed yet have conditional functions. Their products are utilized only under special circumstances, and enforce homeostatic regulation. Mutations do not disclose the function of such genes unless the proper conditions are applied. The genes that encode the Toll-like receptors (TLRs) fall into this category. The TLRs represent the principal sensors of infection in mammals. Absent infection, mammals have little need for the TLRs; they are essential only when microbes gain access to the interior milieu of the host. The function of the TLRs in mammals was first disclosed by a spontaneous mutation in a locus called Lps, when it was shown by positional cloning to be identical to Tlr4. Random germline mutagenesis has since permitted an estimate of the total number of proteins required for TLR signaling to the level of tumor necrosis factor (TNF) synthesis and activity, and has also shown that these sensors are extremely broad in their ability to detect microbes. Ultimately, the TLRs are responsible for most infection-related phenomena, both good and bad. These include the development of fever, shock, and tissue injury, but also the activation of innate and adaptive effector mechanisms that lead to the elimination of microbes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.