Abstract

To characterize the tolerance of different types of human epidermal cells to trypsinization in vitro and develop a new method to separate and purify melanocytes according to their tolerance to trypsinization. Epidermal cells were obtained by separating the epidermis from human foreskins. Some of those cells were used for routine culture, and then were subjected to differential trypsin digestion. The remaining epidermal cells were resuspended in a 0.25% trypsin solution and then were neutralized by the addition of bovine serum at different time points. Immunofluorescence staining of HMB45, K15 and vimentin was used to identify melanocytes, keratinocytes and fibroblasts, respectively. We found that Keratinocytes, melanocytes and fibroblasts are primary cells obtained from conventional cultures of human skin. Purified keratinocytes and melanocytes can be obtained by conventional differential trypsin digestion, but fibroblasts in the melanocyte population quickly gain a survival advantage after passage. With longer trypsin digestion times, the number of adherent cells decreased, the time required for cell attachment increased, and the proportion of melanocytes increased. There were no obvious keratinocytes in cell populations obtained after 12h of trypsinization of epidermal cells, and more short spindle-shaped melanocytes appeared, all of which were HMB45-positive. In conclusion, the tolerance of human epidermal melanocytes to trypsinization in vitro was better than epidermal keratinocytes, and that property can be used to purify melanocytes and was better than traditional differential trypsin digestion. The morphology of cells that survived the long-term trypsin digestion changed and they had good proliferative activity, but seemed to be more immature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call