Abstract

ABSTRACT The concepts of various kinds of asymptotically Toeplitz operators have been originally defined and studied for the Hardy–Hilbert space. The aim of this article is to extend these definitions to the case of operators acting on Banach spaces of holomorphic functions, including Hardy spaces, Hardy–Lorentz spaces, and Hardy–Orlicz spaces. We give a function-theoretic characterization of uniformly asymptotically Toeplitzness and mean weakly asymptotically Toeplitzness for weighted composition operators. We also investigate strong and weak asymptotic Toeplitzness of weighted composition operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.