Abstract

The TNF superfamily member LIGHT has a T-cell co-stimulatory role and has previously been associated with inflammation and autoimmunity. To investigate its role in rheumatoid arthritis (RA), a disease where activated T cells contribute in a prominent way, we have analysed the expression of LIGHT and its receptors in RA and analysed its effects on synovial fibroblasts in vitro. The expression of LIGHT was measured in synovial tissues and fluids and the receptors of LIGHT were detected on synovial fibroblasts derived from patients with RA and osteoarthritis (OA). The effects of recombinant LIGHT on the production of proinflammatory cytokines and proteases and on the apoptosis of synovial fibroblasts was assessed. LIGHT mRNA was present in synovial tissues of patients with RA but not with OA. Correspondingly, soluble LIGHT protein could be detected in RA synovial fluid samples at much higher levels than in synovial fluid from patients with OA. Immunohistochemical detection of LIGHT and analysis of synovial fluid cells by flow cytometry revealed CD4 T cells as the major source of LIGHT in the rheumatoid joint. Synovial fibroblasts from RA patients were found to express the LIGHT receptors HVEM and LTbetaR. Recombinant LIGHT induced RA synovial fibroblasts to upregulate MMP-9 mRNA, CD54 and IL-6 in an NF-kappaB-dependent fashion. In vitro, exposure of cultured synovial fibroblasts to LIGHT reduced FAS-mediated apoptosis significantly, without affecting the rate of spontaneous apoptosis. The results provide evidence for a novel T-cell-dependent activation of synovial fibroblasts by LIGHT in joints of patients with RA, contributing to an inflammatory and destructive phenotype.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.