Abstract

We present one of the first Shanghai Tian Ma Radio Telescope (TMRT) K Band observations towards a sample of 26 infrared dark clouds (IRDCs). We observed the (1,1), (2,2), (3,3), and (4,4) transitions of NH$_{3}$ together with CCS (2$_{1}$-1$_{0}$) and HC$_{3}$N $J\,$=2-1, simultaneously. The survey dramatically increases the existing CCS-detected IRDC sample from 8 to 23, enabling a better statistical study of the ratios of carbon-chain molecules (CCM) to N-bearing molecules in IRDCs. With the newly developed hyperfine group ratio (HFGR) method of fitting NH$_{3}$ inversion lines, we found the gas temperature to be between 10 and 18 K. The column density ratios of CCS to NH$_{3}$ for most of the IRDCs are less than 10$^{-2}$, distinguishing IRDCs from low-mass star-forming regions. We carried out chemical evolution simulations based on a three-phase chemical model NAUTILUS. Our measurements of the column density ratios between CCM and NH$_{3}$ are consistent with chemical evolutionary ages of $\lesssim$10$^{5}$ yr in the models. Comparisons of the data and chemical models suggest that CCS, HC$_{3}$N, and NH$_{3}$ are sensitive to the chemical evolutionary stages of the sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call