Abstract
House dust mites (HDMs) are the most important source of indoor aeroallergens that contribute to the rising incidence of allergic diseases such as allergic asthma. The major HDM, Der f 2, induces inflammatory cytokine expression. Little is known about the signaling pathway involved. We wanted to define the Der f 2 signaling pathway from its receptor to the transcription factor responsible for IL-13 expression and production. Human bronchial epithelial cells were stimulated with Der f 2. The release and gene expression of IL-13 were measured by means of ELISA and RT-PCR, respectively. In the airway inflammation mouse model, airway responses were assessed using ELISA, histology, BAL fluid, and methacholine responsiveness. Here, we show that Der f 2 binds to TLR4 and induces IL-13 expression and production. In the airway inflammation mouse model, Der f 2-induced IL-13 production significantly decreased with treatment of TAK-242, a novel TLR4 inhibitor. Activation of TLR4 by Der f 2 requires the recruitment and activation of Syk, which leads to phosphorylation of PLCγ and membrane translocation of PKCα. p38 MAPK is then activated by PKCα and stimulates PLD1 activity by phosphorylating the Thr147 residue of PLD1. PLD1 activation enhanced binding of ROCK1 to ATF-2 and leads to increased expression of IL-13. Our data extend the knowledge for a variety of possible roles of PLD1 in allergic disorders including asthma pathogenesis and suggest possible candidacy of PLD1 as a molecular target for novel therapeutic approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.