Abstract

Drosophila nemo was first identified as a gene required for tissue polarity during ommatidial development. We have extended the analysis of nemo and found that it participates in multiple developmental processes. It is required during wing development for wing shape and vein patterning. We observe genetic interactions between nemo and mutations in the Notch, Wingless, Frizzled and Decapentaplegic pathways. Our data support the findings from other organisms that Nemo proteins act as negative regulators of Wingless signaling. nemo mutations cause polarity defects in the adult wing and overexpression of nemo leads to abdominal polarity defects. The expression of nemo during embryogenesis is dynamic and dsRNA inhibition and ectopic expression studies indicate that nemo is essential during embryogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call