Abstract

Short seizure episodes are associated with remodeling of neuronal connections. One region where such reorganization occurs is the hippocampus, and in particular, the mossy fiber pathway. Using genetic and pharmacological approaches, we show here a critical role in vivo for tissue plasminogen activator (tPA), an extracellular protease that converts plasminogen to plasmin, to induce mossy fiber sprouting. We identify DSD-1-PG/phosphacan, an extracellular matrix component associated with neurite reorganization, as a physiological target of plasmin. Mice lacking tPA displayed decreased mossy fiber outgrowth and an aberrant band at the border of the supragranular region of the dentate gyrus that coincides with the deposition of unprocessed DSD-1-PG/phosphacan and excessive Timm-positive, mossy fiber termini. Plasminogen-deficient mice also exhibit the laminar band and DSD- 1-PG/phosphacan deposition, but mossy fiber outgrowth through the supragranular region is normal. These results demonstrate that tPA functions acutely, both through and independently of plasmin, to mediate mossy fiber reorganization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.