Abstract

In mammals, a network of cellular circadian clocks organizes physiology and behavior along the 24-h day cycle. The traditional hierarchical model of circadian clock organization with a central pacemaker and peripheral slave oscillators has recently been challenged by studies combining tissue-specific mouse mutants with transcriptome analyses. First, a surprisingly small number of tissue rhythms are lost when only local clocks are ablated and, second, transcriptional circadian rhythms appear to be regulated by a complex mix of local and systemic factors. As reviewed here, these findings suggest a more integrated model of clock network interaction with the central pacemaker as the main source of behavioral and systemic-physiological rhythms and peripheral clocks controlling some local rhythms while at the same time acting as gatekeepers that temporally adjust cellular responses to external stimuli.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.