Abstract

Abstract Building on previous work using single-basin models, we here explore the time-dependent response of the Atlantic meridional overturning circulation (AMOC) to a sudden global temperature change in a two-basin ocean–ice model. We find that the previously identified mechanisms remain qualitatively useful to explain the transient and the long-term time-mean responses of the AMOC in our simulations. Specifically, we find an initial weakening of the AMOC in response to warming (and vice versa for cooling), controlled by the mid-depth meridional temperature contrast across the Atlantic basin. The long-term mean response instead is controlled primarily by changes in the abyssal stratification within the basin. In contrast to previous studies we find that for small-amplitude surface temperature changes, the equilibrium AMOC is almost unchanged, as the abyssal stratification remains similar due to a substantial compensation between the effects of salinity and temperature changes. The temperature-driven stratification change results from the differential warming/cooling between North Atlantic Deep Water and Antarctic Bottom Water, while the salinity change is driven by changes in Antarctic sea ice formation. Another distinct feature of our simulations is the emergence of AMOC variability in the much colder and much warmer climates. We discuss how this variability is related to variations in deep-ocean heat content, surface salinity, and sea ice in the deep convective regions, both in the North Atlantic and in the Southern Ocean, and its potential relevance to past and future climates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.