Abstract

This paper treats the problem of radiation from sources of arbitrary time dependence in a moving medium. The medium is assumed to be lossless, with permittivity ε and permeability μ, and to move with constant velocity v̄ with respect to a given inertial reference frame xyz. It is shown how the Maxwell-Minkowski equations for the electromagnetic fields in the moving medium can be integrated by means of a pair of vector and scalar potential functions analogous to those commonly used with stationary media. The wave equation associated with these potential functions is derived, and a scalar Green's function is defined to satisfy the same type of equation, with a delta-function source term δ(r − r′) δ(t − t′), and the casuality condition. The solution for the Green's function is derived in closed form, by means of a Fourier integral method. The resulting Green's function is useful not only for calculating the fields from arbitrary sources in moving media, but also for its pedagogical value. It is simpler to understand the phenomenon of Cerenkov radiation using this method than it is from the conventional approach to the Cerenkov problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.