Abstract

Long-term potentiation (LTP) is considered the cellular basis of learning and memory. Extremelylow-frequency electromagnetic fields (ELF-EMFs) are neuromodulation tools for regulating LTP. However, the temporal effects of short-term ELF-EMF stimulation on LTP are not yet known. In this study, we evaluated the time-dependent effects of 15 Hz/2 mT ELF-EMF stimulation on LTP at the Schaffer collateral-CA1 (SC-CA1) synapses in Sprague-Dawley rats. Hippocampal slices were exposed to three different modes of ELF-EMFs (sinusoidal, single-frequency pulse, and rhythm pulse) and durations (10, 20, 40, and 60 s). The baseline was recorded for 20 min and field excitatory postsynaptic potential (fEPSP) was recorded for 60 min using multi-electrode arrays (MEA) after plasticity induction using 100 Hz electrical high-frequency stimulation (HFS). Compared to the control group, the LTP decreased under three different magnetic fields and was proportional to time; that is,the longer the time, the greater the inhibition. We also compared the three magnetic fields and showed that the continuous sinusoidal magnetic field had the largest inhibitory rate of LTP, while pulsed and rhythm pulsed magnetic fields were similar. We showed that different modes of ELF-EMF stimulation had a time-dependent effect on LTP at Schaffer collateral-CA1 synapses, which provides experimental evidence for the treatment of related neurological diseases. © 2021 Bioelectromagnetics Society.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.