Abstract

Due to the excellent quantum conversion and spectral response characteristics of the AlGaN photocathode, it has become the most promising III-V group semiconductor photocathode in solar-blind signal photoconversion devices in the ultraviolet band. Herein, the influence factors of the time-resolved characteristics of the AlGaN photocathode are researched by solving the photoelectron continuity equation and photoelectron flow density equation, such as the AlN/AlGaN interface recombination rate, AlGaN electron diffusion coefficient, and AlGaN activation layer thickness. The results show that the response time of the AlGaN photocathode decreases gradually with the increase in AlGaN photoelectron diffusion coefficient and AlN/AlGaN interface recombination rate, but the response time of the AlGaN photocathode gradually becomes saturated with the further increase in AlN/AlGaN interface recombination rate. When the thickness of the AlGaN photocathode is reduced from 250 nm to 50 nm, the response time of the AlGaN photocathode decreases from 63.28 ps to 9.91 ps, and the response time of AlGaN photocathode greatly improves. This study provides theoretical guidance for the development of a fast response UV detector.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.