Abstract

Phase-type distributions are one of the most general classes of distributions permitting a Markovian interpretation. Sparre Andersen risk models with phase-type claim interarrival times or phase-type claims can be analyzed using Markovian techniques, and results can be expressed in compact matrix forms. Computations involved are readily programmable in practice. This paper studies some quantities associated with the first passage time and the time of ruin in a Sparre Andersen risk model with phase-type interclaim times. In an earlier discussion the present author obtained a matrix expression for the Laplace transform of the first time that the surplus process reaches a given target from the initial surplus. Using this result, we analyze (1) the Laplace transform of the recovery time after ruin, (2) the probability that the surplus attains a certain level before ruin, and (3) the distribution of the maximum severity of ruin. We also give a matrix expression for the expected discounted dividend payments prior to ruin for the Sparre Andersen model in the presence of a constant dividend barrier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.