Abstract

Let r∈N . In r -neighbour bootstrap percolation on the vertex set of a graph G , vertices are initially infected independently with some probability p . At each time step, the infected set expands by infecting all uninfected vertices that have at least r infected neighbours. When p is close to 1, we study the distribution of the time at which all vertices become infected. Given t=t(n)=o(logn/loglogn) , we prove a sharp threshold result for the probability that percolation occurs by time t in d -neighbour bootstrap percolation on the d -dimensional discrete torus T d n . Moreover, we show that for certain ranges of p=p(n) , the time at which percolation occurs is concentrated either on a single value or on two consecutive values. We also prove corresponding results for the modified d -neighbour rule

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.