Abstract

PurposeThe purpose of this study was to compare the effect of bipolar radiofrequency energy (bRFE) on chondroplasty at the different time durations in an in vitro experiment that simulated an arthroscopic procedure.MethodsSix fresh bovine knees were used in our study. Six squares were marked on both the medical and lateral femoral condyles of each femur. Each square was respectively treated with bRFE for 0 s, 10 s, 20 s, 30 s, 40 s and 50 s. Full-thickness articular cartilage specimens were harvested from the treatment areas. Each specimen was divided into three distinct parts: one for hematoxylin/eosin staining histology, another for cartilage surface contouring assessment via scanning electron microscopy (SEM), and the last one for glycosaminoglycan (GAG) content measurement.ResultsbRFE caused time-correlated damage to chondrocytes, and GAG content in the cartilage was negatively correlated to exposure time. bRFE caused time-correlated damage to chondrocytes. The GAG content in the cartilage negatively correlated with the exposure time. The sealing effect positively correlated with the exposure time. Additionally, it took at least 20 s of radiofrequency exposure to render a smooth cartilage surface and a score of 2 (normal) in the scoring system used.ConclusionbRFE usage in chondroplasty could effectively trim and polish the cartilage lesion area; however, it induces a dose-dependent detrimental effect on chondrocytes and metabolic activity that negatively correlated with the treatment time. Therefore, cautions should be taken in the use of bRFE for treatment of articular cartilage injury.

Highlights

  • Osteoarthritis results from the degeneration of articular cartilage and the ensuing secondary hyperostosis

  • Partial-thickness chondral defect has been found responsible for the degeneration of articular cartilage and

  • When bipolar radiofrequency energy (bRFE) is applied to chondral conditions, the power should be controlled within 20 W, and the safety profile of radiofrequency remains yet to be proved in long-term studies

Read more

Summary

Introduction

Osteoarthritis results from the degeneration of articular cartilage and the ensuing secondary hyperostosis. Partial-thickness chondral defect has been found responsible for the degeneration of articular cartilage and. When bRFE is applied to chondral conditions, the power should be controlled within 20 W, and the safety profile of radiofrequency remains yet to be proved in long-term studies. Voloshin et al [6] demonstrated chondroplasty with bRFE was effective for partial-thickness chondral defects, but it is still awaiting long-term results. A recent systematic review showed that bRFE ablation achieves dramatically better clinical outcomes and lower complication rates in the treatment of chondral defects than a mechanical shaving device [7]. Thermal chondroplasty using bRFE ablation arouses concerns about the risk of osteonecrosis, chondrolysis, and progression of partial-thickness chondral lesions [8]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.