Abstract

Event-related coherence of the EEG was calculated for 10 subjects performing a visual discrimination GO/NO-GO task. The subjects were instructed to push (GO) or not to push (NO-GO) a button according to visual stimuli. Twenty-one-channel scalp EEGs were recorded and the surface Laplacian was calculated using the source derivation method. The time courses of the coherence between F3 and F4, C3 and C4, and P3 and P4 were calculated using the fast Fourier transform for each task and were compared between conditions. Statistical analysis showed that coherence in the NO-GO condition became significantly higher than that in the GO condition between F3 and F4. The synchronization between bilateral dorsolateral frontal areas might therefore play an important role in the motor inhibition process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call