Abstract

This study explores whether the hydroxyl radical (*OH)-one of the most destructive reactive oxygen species-plays a role in secondary spinal cord injury (SCI). First, we measured the time course of *OH formation in rat spinal tissue after impact SCI by administering salicylate as a trapping agent into the intrathecal space of the cord and measuring the hydroxylation products of salicylate, 2,3- and 2,5-dihydroxybenzoic acid (2,3- and 2,5-DHBA) by HPLC. The 2,3-DHBA concentration was significantly higher in injured spinal tissue than in sham controls at 5 min, 1 and 3 h, but not at 5 h post-injury. Second, we generated *OH by administering H(2)O(2) and FeCl(2)/EDTA (Fenton's reagents) at the concentrations produced by SCI into the gray matter of the cord for 4 h and found that it induced significant cell loss at 24 h post-*OH exposure. Mn (III) tetrakis (4-benzoic acid) porphyrin(MnTBAP)-a broad spectrum reactive species scavenger-significantly reduced *OH-induced cell death. Finally, we generated superoxide and administered FeCl(3)/EDTA in the intrathecal space of the cord at the concentration produced by SCI and measured extracellular *OH formation in the gray matter of the cord by microdialysis sampling. We found that the levels of *OH significantly increased compared to the pre-administration level, indicating that *OH can be produced in vivo by the iron-catalyzed Haber-Weiss reaction. All together, we demonstrated that *OH is an endogenous secondary damaging agent following SCI and the metal-catalyzed Haber-Weiss reaction may contribute to early *OH formation after SCI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.