Abstract

Shoot branching is a major determinant of plant architecture and is regulated by both endogenous and environmental factors. BRANCHED1 (BRC1) is a central local regulator that integrates signals controlling shoot branching. So far, the regulation of BRC1 activity at the protein level is still largely unknown. In this study, we demonstrated that TIE1 (TCP interactor containing EAR motif protein 1), a repressor previously identified as an important factor in the control of leaf development, also regulates shoot branching by repressing BRC1 activity. TIE1 is predominantly expressed in young axillary buds. The gain-of-function mutant tie1-D produced more branches and the overexpression of TIE1 recapitulated the increased branching of tie1-D, while disruption of TIE1 resulted in lower bud activity and fewer branches. We also demonstrated that the TIE1 protein interacts with BRC1 in vitro and in vivo. Expression of BRC1 fused with the C-terminus of the TIE1 protein in wild type caused excessive branching similar to that observed in tie1-D and brc1 loss-of-function mutants. Transcriptome analyses revealed that TIE1 regulated about 30% of the BRC1-dependent genes, including the BRC1 direct targets HB21, HB40 and HB53. These results indicate that TIE1 acts as a positive regulator of shoot branching by directly repressing BRC1 activity. Thus, our results reveal that TIE1 is an important shoot branching regulator, and provide new insights in the post-transcriptional regulation of the TCP transcription factor BRC1.

Highlights

  • Shoot branching greatly affects plant architecture, one of the most important agronomic traits

  • We found that TCP Interactor containing EAR motif protein 1 (TIE1)

  • Our findings demonstrate that TIE1 acts as a key repressor of BRC1 activity and positively regulates shoot branching

Read more

Summary

Introduction

Shoot branching greatly affects plant architecture, one of the most important agronomic traits. The development of shoot branches starts from the initiation of axillary meristems (AMs) in the leaf axils. TB1 is a founder member of the TCP (TB1/CYCLOIDEA/PCF) family of transcription factors conserved in the plant kingdom. In both monocots and dicots, orthologs of TB1 play a pivotal role in the control of bud activity. Examples of this are the rice FINE CULM 1/OsTB1, sorghum SbTB1, Arabidopsis BRANCHED1 (BRC1), and tomato, pea and potato BRC1-like genes [4,5,6,7,8,9]. BRC1 acts as a suppressor of bud activity: loss-of-function brc mutants display accelerated initiation of axillary meristem formation, faster bud development and more branches [6,10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call