Abstract
The combination of the radio tracking of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft and Earth‐based radar measurements of the planet's spin state gives three fundamental quantities for the determination of the interior structure of Mercury: mean density ρ, moment of inertia C, and moment of inertia of the outer solid shell Cm. This work focuses on the additional information that can be gained by a determination of the change in gravitational potential due to planetary tides, as parameterized by the tidal potential Love number k2. We investigate the tidal response for sets of interior models that are compatible with the available constraints (ρ, C, and Cm). We show that the tidal response correlates with the size of the liquid core and the mean density of material below the outer solid shell and that it is affected by the rheology of the outer solid shell of the planet, which depends on its temperature and mineralogy. For a mantle grain size of 1 cm, we calculate that the tidal k2 of Mercury is in the range 0.45 to 0.52. Some of the current models for the interior structure of Mercury are compatible with the existence of a solid FeS layer at the top of the core. Such a layer, if present, would increase the tidal response of the planet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.