Abstract

SummaryRocket motors designed for operation in ground launched vehicles generally have nozzle expansion ratios giving optimum thrust at low altitude (about 20 000ft). At higher altitudes the jets are under-expanded and the thrust is less than the maximum available with nozzles of higher expansion ratio. Some of this lost thrust may be regained by suitable design of the propulsion bay geometry, without the low altitude disadvantages of high expansion ratio nozzles. In addition, where the vehicle is propelled by clustered motors, interaction between the jet effluxes at high altitudes can be used to develop an extra thrust acting on the base of the vehicle. The flow changes, from low to high altitude, leading to these effects are described.The results of the first firings of Black Knight drew attention in this country to these effects. Model tests in both the U.K. and America have confirmed them and indicated various means by which the thrust of clustered rockets may be augmented; these are described and consideration is also given to the side effects of thrust augmentation on vehicle control and propulsion bay heating. A full scale experiment, planned for the end of 1962 is outlined and possible future applications are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.