Abstract

A new analytic threshold-voltage model for a MOSFET device with localized interface charges is presented. Dividing the damaged MOSFET device into three zones, the surface potential is obtained by solving the two-dimensional (2-D) Poisson's equation. Calculating the minimum surface potential, the analytic threshold-voltage model is derived. It is verified that the model accurately predicts the threshold voltage for both fresh and damaged devices. Moreover, the Drain-Induced Barrier Lowering (DIBL) and substrate bias effects are included in this model. It is shown that the screening effects due to built-in potential and drain bias dominate the impact of the localized interface charge on the threshold voltage. Calculation results show that the extension, position and density of localized interface charge are the main issues influencing the threshold voltage of a damaged MOSFET device. Simulation results using a 2-D device simulator are used to verify the validity of this model, and quite good agreement is obtained for various cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.