Abstract

Author(s): Oh, SJ; Tataru, D | Abstract: This article is devoted to the energy critical hyperbolic Yang-Mills equation in the (4 + 1)-dimensional Minkowski space, which is considered by the authors in a sequence of four papers. The final outcome of these papers is twofold: (i) the Threshold Theorem, which asserts that global well-posedness and scattering hold for all topologically trivial initial data with energy below twice the ground state energy; and (ii) the Dichotomy Theorem, which for larger data in arbitrary topological classes provides a choice of two outcomes, either a global scattering solution or a soliton bubbling off. In the last case, the bubbling-off phenomena can happen in one of two ways: (a) in finite time, triggering a finite time blowup; or (b) in infinite time. Our goal here is to first describe the equation and the results, and then to provide an overview of the flow of ideas within their proofs in the above-mentioned four papers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.