Abstract

The crack growth rates and threshold stress intensities,K TH, for a 3 1/2 NiCrMoV steel (0.2 pct proof stress 1200 MPa) have been measured in a hydrogen environment at various temperatures and hydrogen pressures. Fractographic evidence and the observation of alternating fast and slow crack growth nearK TH suggests that the crack advances by the repeated nucleation of microcracks at microstructural features ahead of the main crack. Transient crack growth is observed following load increases just belowK TH. Using the idea, from unstable cleavage fracture theory, that for fracture a critical stress must be exceeded over a critical distance ahead of the crack, and assuming that this critical stress is reduced in proportion to the local hydrogen concentration (in equilibrium with the external hydrogen atK TH), a theoretical dependence ofK TH on hydrogen pressure is derived which compares well with the experimental evidence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.