Abstract

In this paper, a stochastic and a deterministic SIS epidemic model with isolation and varying total population size are proposed. For the deterministic model, we establish the threshold R0. When R0 is less than 1, the disease-free equilibrium is globally stable, which means the disease will die out. While R0 is greater than 1, the endemic equilibrium is globally stable, which implies that the disease will spread. Moreover, there is a critical isolation rate δ*, when the isolation rate is greater than it, the disease will be eliminated. For the stochastic model, we also present its threshold R0s. When R0s is less than 1, the disease will disappear with probability one. While R0s is greater than 1, the disease will persist. We find that stochastic perturbation of the transmission rate (or the valid contact coefficient) can help to reduce the spread of the disease. That is, compared with stochastic model, the deterministic epidemic model overestimates the spread capacity of disease. We further find that there exists a critical the stochastic perturbation intensity of the transmission rate σ*, when the stochastic perturbation intensity of the transmission rate is bigger than it, the disease will disappear. At last, we apply our theories to a realistic disease, pneumococcus amongst homosexuals, carry out numerical simulations and obtain the empirical probability density under different parameter values. The critical isolation rate δ* is presented. When the isolation rate δ is greater than δ*, the pneumococcus amongst will be eliminated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.