Abstract
AbstractWe study the Langevin dynamics for spherical ‐spin models, focusing on the short time regime described by the Cugliandolo–Kurchan equations. Confirming a prediction of Cugliandolo and Kurchan, we show the asymptotic energy achieved is exactly in the low temperature limit. The upper bound uses hardness results for Lipschitz optimization algorithms and applies for all temperatures. For the lower bound, we prove the dynamics reaches and stays above the lowest energy of any approximate local maximum. In fact the latter behavior holds for any Hamiltonian obeying natural smoothness estimates, even with disorder‐dependent initialization and on exponential time‐scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.