Abstract
There is little available information about the important interactions between selenium and cadmium (Se-Cd) in crops grown on natural Se-Cd rich soils. We investigated their interactive effects on the translocation and uptake of Se and Cd from soils to crops. Corn (Zea mays L.) roots, stems, leaves, and grains, and their corresponding rhizosphere soils were collected from naturally Se-Cd rich areas in Wumeng Mountain, Guizhou, China. The Se and Cd levels were determined in the soils, roots, stems, leaves, and grains. Soil bioavailable Se and Cd were also determined. The low soil bioavailable molar ratios for Se and Cd (Se:Cd) (≤0.7) improved Cd accumulation in the plants. However, relatively high Se:Cd molar ratios (>0.7) in the soils prevented Cd from entering the plants, but the effect of the soil Se:Cd on Se accumulation in corn was not significant. The strong anion exchange-high performance liquid chromatography-inductively coupled plasma mass spectroscopy (SAX-HPLC-ICP-MS) chromatograms showed that Se-Cd complexes occurred in the leaves, which likely indicated that direct interactions between Se and Cd happened there. The results suggested that thresholds for soil bioavailable Se:Cd molar ratios played a role in the interaction between Se and Cd in corn under natural conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.