Abstract

Abstract The first three-dimensional boundary value problem is considered for the basic equations of statics of the elastic mixture theory in the finite and infinite domains bounded by the closed surfaces. It is proved that this problem splits into two problems whose investigation is reduced to the first boundary value problem for an elliptic equation which structurally coincides with an equation of statics of an isotropic elastic body. Using the potential method and the theory of Fredholm integral equations of second kind, the existence and uniqueness of the solution of the first boundary value problem is proved for the split equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.