Abstract

The three-dimensional inertial motion of pyramidal bodies, optimal in their depth of penetration, formed from parts of planes tangential to a circular cone and having a base in the form of a rhombus or a star, consisting of four symmetrical cycles, is investigated using the numerical solution of the Cauchy problem of the complete system of equations of motion of a body. It is assumed that the force action of the medium on the body can be described within the framework of a local model, when the pressure on the body surface can be represented by a two-term formula, quadratic in the velocity, and the friction is constant. It is shown that the stability criterion, obtained previously for the rectilinear motion of a pyramidal body on the assumption that the perturbed motion of the body is planar, also enables one, in the case of an arbitrary specification of the small perturbations of the parameters leading to the tree-dimensional motion of the body, to determine the nature of development of these perturbations. It is shown that if the rectilinear motion of the body is stable, its perturbed three-dimensional motion can be represented in the form of the superposition of plane motions, and when investigating each of them, the analytical solution of the plane problem obtained earlier can be used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.