Abstract

Many captive animals are fed diets that are drastically different in mechanical properties than their wild diet. Most captive pantherines are fed a nutritionally supplemented diet consisting almost entirely of ground meat. While many zoos supplement this diet with bones, the fact remains that large captive felids are fed diets that require substantially less masticatory effort than those of their wild counterparts. The osteological effects of this dietary difference have not been fully evaluated. To this end, we compared linear measurements and 3D geometric morphometric landmarks of captive and wild lions and tigers. Using Principal Component (PC) analysis of the linear measurements, not only were the sexes and species statistically distinct, but so too was the population clearly divisible in terms of captivity status. The 3D analysis supported these findings: although the most influential variable in the sample (PC1, 21.5% of the variation) separates the two species, the second most influential contributor (PC2) to the overall skull shape is driven not by the sex differences in these highly dimorphic species, but rather by their captivity status. In fact, captivity status drives nearly twice as much of the 3D variation as sexual dimorphism (14.8% vs. 8.0% for PC2 vs. PC3). Thus the shape is influenced nearly twice as much by whether the animal was captive or wild than by whether it was male or female. If a causal relationship can be demonstrated between dietary mechanical properties and morphology, people who oversee the diets of captive carnivores should consider modifying these diets to account for not only nutritional but also the mechanical properties of a carcass-based diet as well. In addition to the husbandry implications, our analyses show the ways in which captive specimens are different than their wild counterparts – findings that have implications for morphologists when considering anatomical samples.

Highlights

  • Comparative morphologists tend to exclude captive animals from their research because of perceived distortions in these animals’ anatomy

  • We collected data on all complete adult lion and tiger specimens (Table 1) from the American Museum of Natural History (AMNH; New York), and the Smithsonian Institution’s National Museum of Natural History (USNM; Washington DC) as well as a few specimens from captive animals that were donated to the PI for research purposes by Carolina Tiger Rescue (Pittsboro NC) – these specimens are freely available for study upon request

  • The fact that captivity status related most closely to the second most important source of three-dimensional variation (PC 2), a variable accounting for nearly twice the amount of variation as the axis that most closely tracked with sexual dimorphism (PC 3) was unexpected

Read more

Summary

Introduction

Comparative morphologists tend to exclude captive animals from their research because of perceived distortions in these animals’ anatomy. Quantifying the morphological effects of captivity will help morphologists make decisions about specimen selection and address sources of sample based bias. The Standard Zoo Diet Most captive facilities provide felids with a diet of ground meat supplemented with vitamins. Many companies advertise commercial meat products that contain muscle with vitamin and mineral supplements, or supplements that, when added to meat products, will provide captive felids with the nutrition they need (e.g., [4,5,6,7]). Given that wild lions and tigers predominantly consume vertebrate flesh off the bone including all associated connective tissues [8,9], these captive diets are nutritionally complete, they are structurally unnatural

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call