Abstract

AbstractThe Martian magnetosphere is a product of the interaction of Mars with the interplanetary magnetic field and the supersonic solar wind. The location of the bow shock has been previously modeled as conic sections using data from spacecraft such as Phobos 2, Mars Global Surveyor, and Mars Express. The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission spacecraft arrived in orbit about Mars in November 2014 resulting in thousands of crossings to date. We identify over 1,000 bow shock crossings. We model the bow shock as a three‐dimensional surface accommodating asymmetry caused by crustal magnetic fields. By separating MAVEN's bow shock encounters based on solar condition, we also investigate the variability of the surface. We find that the shock surface varies in shape and location in response to changes in the solar radiation, the solar wind Mach number, dynamic pressure of the solar wind, and the relative local time location of the strong crustal magnetic fields (i.e., whether they are on the dayside or on the nightside).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.